pishen / store4s   0.17.8

Apache License 2.0 GitHub

A Scala library for Firestore in Datastore mode

Scala versions: 2.13 2.12


Maven Central javadoc

A Scala library for Firestore in Datastore mode, providing compile-time mappings between case classes and Datastore entities, a type-safe query DSL, and asynchronous interfaces.

Create an Entity

// Google's Java library
val taskKey = datastore.newKeyFactory().setKind("Task").newKey("sampleTask")
val task = Entity.newBuilder(taskKey)
  .set("category", "Personal")
  .set("done", false)
  .set("priority", 4)
  .set("description", "Learn Cloud Datastore")

// store4s
val task = Task("Personal", false, 4, "Learn Cloud Datastore").asEntity("sampleTask")

Create a Query

// Google's Java library
val query = Query.newEntityQueryBuilder()
      PropertyFilter.eq("done", false),
      PropertyFilter.ge("priority", 4)

// store4s
val query = Query.from[Task]
  .filter(t => !t.done && t.priority >= 4)


Note This document is for the sttp version of store4s, to see the older version which is integrated with Google's Java API and Datastore V1 API (which is compatible with Apache Beam), check the old README.

"net.pishen" %% "store4s-sttp" % "<version>"

Java 11 is required since version 0.16.0.

store4s uses sttp to connect with Datastore's REST API. By using sttp, you can integrate store4s with the HTTP backend and JSON library you are using. (e.g. akka-http with circe, or http4s with play-json ...etc)

If you are using circe as your JSON library, add the additional dependency to reduce the boilerplate code:

"net.pishen" %% "store4s-sttp-circe" % "<version>"

Getting Started

import store4s.sttp._
// import these if you are using circe
import store4s.sttp.circe._
import sttp.client3.circe._
import io.circe.generic.auto._

// synchronous version
implicit val ds = Datastore()

// asynchronous version (use akka-http as example)
import sttp.client3.akkahttp._
implicit val ds = Datastore(backend = AkkaHttpBackend())

store4s will detect the default project id and refresh the access token using Google's Application Default Credentials, but you can also specify it by yourself:

implicit val ds = Datastore(projectId = "my-project-id")


Here are some basic functions to interact with Datastore:

ds.transaction { tx =>
  val oldTask = tx.lookupById[Task](taskId).get
  val entity = changeTaskInfo(oldTask)
  (oldTask, Seq(tx.update(entity)))

Check the Scaladoc or read on for further details.


Convert a case class to Entity using asEntity:

case class Task(
  category: String,
  done: Boolean,
  priority: Int,
  description: String

// create an Entity with name
val entity1 = Task("Personal", false, 4, "Learn Cloud Datastore").asEntity("sampleTask")

// create an Entity with id
val entity2 = Task("Work", true, 5, "Drink milk").asEntity(10)

The basic data types, Seq, Option, and nested case classes are supported.

Custom types

To support custom types, one can create a ValueEncoder from an existing ValueEncoder using contramap:

implicit val enc: ValueEncoder[LocalDate] =

Exclude from indexes

To exclude properties from indexes, use the excludeFromIndexes function from EntityEncoder:

implicit val enc = EntityEncoder[Task].excludeFromIndexes(_.description)


Decode an Entity back to case class using EntityDecoder:

// Right(Task("Personal", false, 4, "Learn Cloud Datastore"))

Note By using helper functions like lookupById[A], lookupByName[A], and runQuery from Datastore, EntityDecoder is automatically applied underneath, which means you usually don't need to call this decode function by yourself.

Custom types

To support custom types, one can create a ValueDecoder from an existing ValueDecoder using map or emap:

implicit val dec: ValueDecoder[LocalDate] =


Build a Query object using Query.from[A]:

val query = Query.from[Task]
  .filter(t => !t.done && t.priority >= 4)

Drop this Query object into runQuery to get the result:

val res = ds.runQuery(query)

res.toSeq // Seq[Task]
res.endCursor // String

One can also trigger the run function directly from query object:

val res = query.run(ds)

res.toSeq // Seq[Task]
res.endCursor // String

Array type

For querying on array type values, which corresponds to Seq, an exists function is available:

case class Task(tags: Seq[String])

  .filter(_.tags.exists(_ == "Scala"))
  .filter(_.tags.exists(_ == "rocks"))

Nested entity

For querying on the properties of embedded entity (which can be referred using .):

case class Category(name: String, description: String)
case class Task(category: Category, done: Boolean, description: String)

Query.from[Task].filter(_.category.name == "Personal")

ADT (Algebraic Data Types)

Support for encoding/decoding ADT is achieved by adding a property named _type into entities. When encoding a trait like this:

sealed trait User
case class Student(name: String) extends User
case class Teacher(name: String) extends User

val user: User = Student("Maimai Yuzuriha")

val entity = user.asEntity("sampleUser")

The result entity will be:

key {
  path {
    kind: "User"
    name: "sampleUser"
properties {
  key: "_type"
  value {
    string_value: "Student"
properties {
  key: "name"
  value {
    string_value: "Maimai Yuzuriha"

Which can then be decoded using


The property name _type can be configured by providing your own TypeIdentifier:

implicit val typeIdentifier = TypeIdentifier("my_type")


Use transaction to create a Transaction:

val res = ds.transaction { tx =>
  val oldTask = tx.lookupById[Task](taskId).get
  val entity = changeTaskInfo(oldTask)
  (oldTask, Seq(tx.update(entity)))
// res: Task

It expects a lambda function with type Transaction[F] => F[(R, Seq[Mutation])], note that all the mutations should be committed together at the end. If the lambda return a failed effect (e.g. throwing an Exception in synchronous mode or returning a failed Future in asynchronous mode), transaction will be automatically rolled back and no changes will be applied.