Enabling Continuous Data Processing with Apache Spark and Azure Event Hubs
- ingestion
- event-hubs
- microsoft
- streaming
- azure
- structured-streaming
- spark
- eventhubs
- stream
- spark-streaming
- scala
- real-time
- bigdata
- connector
- apache-spark
- databricks
- continuous
- kafka
- apache
Scala versions:
2.11
azure-eventhubs-spark-parent v2.3.hack-for-spark-aggregator.1
Group ID:
io.github.tilumi
Artifact ID:
azure-eventhubs-spark-parent_2.11
Version:
v2.3.hack-for-spark-aggregator.1
Release Date:
Apr 18, 2019
Licenses:
Files:
Developers:
libraryDependencies += "io.github.tilumi" %% "azure-eventhubs-spark-parent" % "v2.3.hack-for-spark-aggregator.1"
ivy"io.github.tilumi::azure-eventhubs-spark-parent:v2.3.hack-for-spark-aggregator.1"
//> using dep "io.github.tilumi::azure-eventhubs-spark-parent:v2.3.hack-for-spark-aggregator.1"
import $ivy.`io.github.tilumi::azure-eventhubs-spark-parent:v2.3.hack-for-spark-aggregator.1`
<dependency> <groupId>io.github.tilumi</groupId> <artifactId>azure-eventhubs-spark-parent_2.11</artifactId> <version>v2.3.hack-for-spark-aggregator.1</version> </dependency>
compile group: 'io.github.tilumi', name: 'azure-eventhubs-spark-parent_2.11', version: 'v2.3.hack-for-spark-aggregator.1'