PMML4S is a PMML (Predictive Model Markup Language) scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.
- Features
- Installation
- Use in Scala
- Use in Java
- Use PMML in Spark
- Use PMML in PySpark
- Use PMML in Python
- Deploy PMML as REST API
- Deploy and Manage AI/ML models at scale
- Attentions
- Support
- License
PMML4S is a lightweight, clean and efficient implementation based on the PMML specification from 2.0 through to the latest 4.4.1.
It supports the following models:
- Anomaly Detection Models
- Association Rules
- Cluster Models
- General Regression
- k-Nearest Neighbors
- Naive Bayes
- Neural Network
- Regression
- Ruleset
- Scorecard
- Trees
- Vector Machine
- Multiple Models
Not yet supported models:
It supports the following transformations:
- Normalization
- Discretization
- Value mapping
- Text Indexing
- Functions
Not yet supported transformations:
- Aggregation
- Lag
libraryDependencies += "org.pmml4s" %% "pmml4s" % pmml4sVersion
<dependency>
<groupId>org.pmml4s</groupId>
<artifactId>pmml4s_${scala.version}</artifactId>
<version>${pmml4s.version}</version>
</dependency>
PMML4S is really easy to use. Just do one or more of the following:
-
Load model.
import org.pmml4s.model.Model import scala.io.Source // load a model from an IO source that supports various sources, e.g. from a URL locates a PMML model. val model = Model(Source.fromURL(new java.net.URL("http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml")))
or
import org.pmml4s.model.Model // load a model from those help methods, e.g. pathname, file object, a string, an array of bytes, or an input stream. val model = Model.fromFile("single_iris_dectree.xml")
-
Call
predict(values)
to predict new values that can be in different types, and the type of results is always same as inputs.values
in a Map:
scala> val result = model.predict(Map("sepal_length" -> 5.1, "sepal_width" -> 3.5, "petal_length" -> 1.4, "petal_width" -> 0.2)) result: Map[String,Any] = Map(probability -> 1.0, probability_Iris-versicolor -> 0.0, probability_Iris-setosa -> 1.0, probability_Iris-virginica -> 0.0, predicted_class -> Iris-setosa, node_id -> 1)
values
in a list of pairs of keys and values:
scala> val result = model.predict("sepal_length" -> 5.1, "sepal_width" -> 3.5, "petal_length" -> 1.4, "petal_width" -> 0.2) result: Seq[(String, Any)] = ArraySeq((predicted_class,Iris-setosa), (probability,1.0), (probability_Iris-setosa,1.0), (probability_Iris-versicolor,0.0), (probability_Iris-virginica,0.0), (node_id,1))
values
in an Array:
The order of those values is supposed as same as the input fields list, and the order of results is same as the output fields list.
scala> val inputNames = model.inputNames inputNames: Array[String] = Array(sepal_length, sepal_width, petal_length, petal_width) scala> val result = model.predict(Array(5.1, 3.5, 1.4, 0.2)) result: Array[Any] = Array(Iris-setosa, 1.0, 1.0, 0.0, 0.0, 1) scala> val outputNames = model.outputNames outputNames: Array[String] = Array(predicted_class, probability, probability_Iris-setosa, probability_Iris-versicolor, probability_Iris-virginica, node_id)
values
in the JSON format:
It supports the following styles, and the JSON string can take more than more records to predict, and the results are still a string in JSON with the same format as input.
- `records` : list like [{column -> value}, … , {column -> value}] - `split` : dict like {‘columns’ -> [columns], ‘data’ -> [values]}
scala> val result = model.predict("""[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}, {"sepal_length": 7, "sepal_width": 3.2, "petal_length": 4.7, "petal_width": 1.4}]""") result: String = [{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"},{"probability":0.9074074074074074,"probability_Iris-versicolor":0.9074074074074074,"probability_Iris-setosa":0.0,"probability_Iris-virginica":0.09259259259259259,"predicted_class":"Iris-versicolor","node_id":"3"}] scala> val result = model.predict("""{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data":[[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]]}""") result: String = {"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"],["Iris-versicolor",0.9074074074074074,0.0,0.9074074074074074,0.09259259259259259,"3"]]}
values
in the PMML4S'sSeries
:
import org.pmml4s.data.Series import org.pmml4s.util.Utils // The input schema contains a list of input fields with its name and data type, you can prepare data based on it. scala> val inputSchema = model.inputSchema inputSchema: org.pmml4s.common.StructType = StructType(StructField(sepal_length,double), StructField(sepal_width,double), StructField(petal_length,double), StructField(petal_width,double)) // Suppose the row is a record in map from an external columnar data, e.g. a CSV file, or relational database. val row = Map("sepal_length" -> "5.1", "sepal_width" -> "3.5", "petal_length" -> "1.4", "petal_width" -> "0.2") // You need to convert the data to the desired type defined by PMML, and keep the same order as defined in the input schema. val values = inputSchema.map(x => Utils.toVal(row(x.name), x.dataType)) scala> val result = model.predict(Series.fromSeq(values)) result: org.pmml4s.data.Series = [Iris-setosa,1.0,1.0,0.0,0.0,1],[(predicted_class,string),(probability,double),(probability_Iris-setosa,double),(probability_Iris-versicolor,double),(probability_Iris-virginica,double),(node_id,string)] // You can also create a Series with schema, so that values will be accessed by names, the order of values is trivial, e.g. scala> val result = model.predict(Series.fromSeq(values.reverse, org.pmml4s.common.StructType(inputSchema.fields.reverse))) result: org.pmml4s.data.Series = [Iris-setosa,1.0,1.0,0.0,0.0,1], [(predicted_class,string),(probability,double),(probability_Iris-setosa,double),(probability_Iris-versicolor,double),(probability_Iris-virginica,double),(node_id,string)]
Which format to use?
You can use any formats of values according to your environment. Except of the
Series
that need to convert the data explicitly, you don't need to callUtils.toVal
explicitly to convert data to ones defined by PMML for others, the conversion will be operated properly automatically. e.g. those input values are string, not double, you can still get the same correct results.scala> val result = model.predict(Map("sepal_length" -> "5.1", "sepal_width" -> "3.5", "petal_length" -> "1.4", "petal_width" -> "0.2")) result: Map[String,Any] = Map(probability -> 1.0, probability_Iris-versicolor -> 0.0, probability_Iris-setosa -> 1.0, probability_Iris-virginica -> 0.0, predicted_class -> Iris-setosa, node_id -> 1) scala> val result = model.predict(Array("5.1", "3.5", "1.4", "0.2")) result: Array[Any] = Array(Iris-setosa, 1.0, 1.0, 0.0, 0.0, 1)
-
Understand the result values.
You can see the names of output fields, like
predicted_class
,probability
, actually those names are trivial, the PMML can use any names for those output fields.The most important attribute of
OutputField
isfeature
that specifies the value the output field takes from the computed mining result, about other attributes, see DMGThe
Output
is optional for PMML, if it's not present, PMML4S will produce some predefined output fields, e.g.Name Description predicted_{target} Predicted value of the specified target for the supervised model probability Probability of the predicted categorical value for the classification model probability_{category} Probability of the specified category for the classification model confidence Confidence of the specified category for the classification model node_id ID of the hit node for the tree model cluster Identifier of the winning cluster for the clustering model cluster_name Name of the winning cluster for the clustering model distance Distance to the predicted entity for the clustering model similarity Similarity to the predicted entity for the clustering model reason_code_{rank} Reason code of rank for the scorecard model anomalyScore Anomaly score of the anomaly detection model Call
outputFields()
to get a list of output fields describe result values.// The output fields describe the result values. val outputFields = model.outputFields scala> outputFields.foreach(println) OutputField(name=predicted_class, displayName=Some(Predicted value of class), dataType=string, opType=nominal, feature=predictedValue, targetField=None, value=None, ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None) OutputField(name=probability, displayName=Some(probability of predicted value), dataType=double, opType=continuous, feature=probability, targetField=None, value=None, ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None) OutputField(name=probability_Iris-setosa, displayName=Some(probability of Iris-setosa), dataType=double, opType=continuous, feature=probability, targetField=None, value=Some(Iris-setosa), ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None) OutputField(name=probability_Iris-versicolor, displayName=Some(probability of Iris-versicolor), dataType=double, opType=continuous, feature=probability, targetField=None, value=Some(Iris-versicolor), ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None) OutputField(name=probability_Iris-virginica, displayName=Some(probability of Iris-virginica), dataType=double, opType=continuous, feature=probability, targetField=None, value=Some(Iris-virginica), ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None) OutputField(name=node_id, displayName=Some(ID of hit node), dataType=string, opType=nominal, feature=entityId, targetField=None, value=None, ruleFeature=consequent, algorithm=exclusiveRecommendation, rank=1, rankBasis=confidence, rankOrder=descending, isMultiValued=false, segmentId=None, isFinalResult=true, decisions=None, expr=None)
It's also easy to use and similar as Scala.
-
Load model.
import org.pmml4s.model.Model; Model model = Model.fromFile("single_iris_dectree.xml");
-
Call
predict(values)
to predict new values that can be in different types, and the type of results is always same as inputs.values
in a Map of Java:
import java.util.Map; import java.util.HashMap; Map result = model.predict(new HashMap<String, Object>() {{ put("sepal_length", 5.1); put("sepal_width", 3.5); put("petal_length", 1.4); put("petal_width", 0.2); }});
values
in an Array:
The order of those values is supposed as same as the input fields list, and the order of results is same as the output fields list.
String[] inputNames = model.inputNames(); Object[] result = model.predict(new Double[]{5.1, 3.5, 1.4, 0.2});
values
in the JSON format:
It's same as Scala
values
in the PMML4S'sSeries
:
import org.pmml4s.data.Series; import org.pmml4s.util.Utils; import org.pmml4s.common.StructType; import org.pmml4s.common.StructField; // The input schema contains a list of input fields with its name and data type, you can prepare data based on it. StructType inputSchema = model.inputSchema(); // Suppose the row is a record in map from an external columnar data, e.g. a CSV file, or relational database. Map row = new HashMap<String, String>() {{ put("sepal_length", "5.1"); put("sepal_width", "3.5"); put("petal_length", "1.4"); put("petal_width", "0.2"); }} // You need to convert the data to the desired type defined by PMML, and keep the same order as defined in the input schema. Object[] values = new Object[inputSchema.size()]; for (int i = 0; i < values.length; i++) { StructField sf = inputSchema.apply(i); values[i] = Utils.toVal(row.get(sf.name()), sf.dataType()); } Series result = model.predict(Series.fromArray(values)) // You can also create a Series with schema, so that values will be accessed by names, the order of values is trivial, e.g. Series result = model.predict(Series.fromArray(values, inputSchema)))
-
Understand the result values. See details in Scala above
See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.
See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.
See the PyPMML project. PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.
See the AI-Serving project. AI-Serving is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP (REST API) and gRPC endpoints.
See the DaaS system that deploys AI/ML models in production at scale on Kubernetes.
-
Thread Safe.
Except of the Association model with transaction, all model objects are read-only, so you are free to use them in a multi-threaded environment.
-
Scoring Assumptions.
For the
regression
model with an integer target, float numeric predictions will be produced when there are no round methods specified explicitly. -
Use PMML4S library in Android.
You need to use the Scala 2.11 version in Andriod, the Scala core library
scala-library
of 2.12 and 2.13 depend on the classjava.lang.ClassValue
that is missing in the java.lang package.
If you have any questions about the PMML4S library, please open issues on this repository.
Feedback and contributions to the project, no matter what kind, are always very welcome.
PMML4S is licensed under APL 2.0.