-
liquidsvm/liquidsvm 0.6.0
Support vector machines (SVMs) and related kernel-based learning algorithms are a well-known class of machine learning algorithms, for non-parametric classification and regression. liquidSVM is an implementation of SVMs whose key features are: fully integrated hyper-parameter selection, extreme speed on both small and large data sets, full flexibility for experts, and inclusion of a variety of different learning scenarios: multi-class classification, ROC, and Neyman-Pearson learning, and least-squares, quantile, and expectile regression.
Scala versions: 2.11 -
catboost/catboost 1.2.7
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
Scala versions: 2.13 2.12 2.11 -
h2oai/h2o-3 3.30.0.3
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
Scala versions: 2.11